skip to main content


Search for: All records

Creators/Authors contains: "Bernstein, Gary M"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Using Fisher information matrices, we forecast the uncertaintiesσMon the measurement of a “Planet X” at heliocentric distancedXvia its tidal gravitational field’s action on the known planets. Using planetary measurements currently in hand, including ranging from the Juno, Cassini, and Mars-orbiting spacecraft, we forecast a median uncertainty (over all sky positions) ofσM=0.22M(dx/400au)3.A 5σdetection of a 5MPlanet X atdX= 400 au should be possible over the full sky but over only 5% of the sky atdX= 800 au. The gravity of an undiscovered Earth- or Mars-mass object should be detectable over 90% of the sky to a distance of 260 or 120 au, respectively. Upcoming Mars ranging improves these limits only slightly. We also investigate the power of high-precision astrometry of ≈8000 Jovian Trojans over the 2023–2035 period from the upcoming Legacy Survey of Space and Time (LSST). We find that the dominant systematic errors in optical Trojan astrometry (photocenter motion, nongravitational forces, and differential chromatic refraction) can be solved internally with minimal loss of information. The Trojan data allow cross-checks with Juno/Cassini/Mars ranging, but do not significantly improve the best achievableσMvalues until they are ≳10× more accurate than expected from LSST. The ultimate limiting factor in searches for a Planet X tidal field is confusion with the tidal field created by the fluctuating quadrupole moment of the Kuiper Belt as its members orbit. This background will not, however, become the dominant source of uncertainty until the data get substantially better than they are today.

     
    more » « less
  2. ABSTRACT

    The power spectrum of the non-linearly evolved large-scale mass distribution recovers only a minority of the information available on the mass fluctuation amplitude. We investigate the recovery of this information in 2D ‘slabs’ of the mass distribution averaged over ≈100 h−1 Mpc along the line of sight, as might be obtained from photometric redshift surveys. We demonstrate a Hamiltonian Monte Carlo method to reconstruct the non-Gaussian mass distribution in slabs, under the assumption that the projected field is a point-transformed Gaussian random field, Poisson-sampled by galaxies. When applied to the Quijote N-body suite at z = 0.5 and at a transverse resolution of 2 h−1 Mpc, the method recovers ∼30 times more information than the 2D power spectrum in the well-sampled limit, recovering the Gaussian limit on information. At a more realistic galaxy sampling density of 0.01 h3 Mpc−3, shot noise reduces the information gain to a factor of 5 improvement over the power spectrum at resolutions of 4 h−1 Mpc or smaller.

     
    more » « less
  3. null (Ed.)
    ABSTRACT Cosmological analyses of galaxy surveys rely on knowledge of the redshift distribution of their galaxy sample. This is usually derived from a spectroscopic and/or many-band photometric calibrator survey of a small patch of sky. The uncertainties in the redshift distribution of the calibrator sample include a contribution from shot noise, or Poisson sampling errors, but, given the small volume they probe, they are dominated by sample variance introduced by large-scale structures. Redshift uncertainties have been shown to constitute one of the leading contributions to systematic uncertainties in cosmological inferences from weak lensing and galaxy clustering, and hence they must be propagated through the analyses. In this work, we study the effects of sample variance on small-area redshift surveys, from theory to simulations to the COSMOS2015 data set. We present a three-step Dirichlet method of resampling a given survey-based redshift calibration distribution to enable the propagation of both shot noise and sample variance uncertainties. The method can accommodate different levels of prior confidence on different redshift sources. This method can be applied to any calibration sample with known redshifts and phenotypes (i.e. cells in a self-organizing map, or some other way of discretizing photometric space), and provides a simple way of propagating prior redshift uncertainties into cosmological analyses. As a worked example, we apply the full scheme to the COSMOS2015 data set, for which we also present a new, principled SOM algorithm designed to handle noisy photometric data. We make available a catalogue of the resulting resamplings of the COSMOS2015 galaxies. 
    more » « less
  4. null (Ed.)
    ABSTRACT Photometric galaxy surveys constitute a powerful cosmological probe but rely on the accurate characterization of their redshift distributions using only broad-band imaging, and can be very sensitive to incomplete or biased priors used for redshift calibration. A hierarchical Bayesian model has recently been developed to estimate those from the robust combination of prior information, photometry of single galaxies, and the information contained in the galaxy clustering against a well-characterized tracer population. In this work, we extend the method so that it can be applied to real data, developing some necessary new extensions to it, especially in the treatment of galaxy clustering information, and we test it on realistic simulations. After marginalizing over the mapping between the clustering estimator and the actual density distribution of the sample galaxies, and using prior information from a small patch of the survey, we find the incorporation of clustering information with photo-z’s tightens the redshift posteriors and overcomes biases in the prior that mimic those happening in spectroscopic samples. The method presented here uses all the information at hand to reduce prior biases and incompleteness. Even in cases where we artificially bias the spectroscopic sample to induce a shift in mean redshift of $\Delta \bar{z} \approx 0.05,$ the final biases in the posterior are $\Delta \bar{z} \lesssim 0.003.$ This robustness to flaws in the redshift prior or training samples would constitute a milestone for the control of redshift systematic uncertainties in future weak lensing analyses. 
    more » « less
  5. Abstract

    We report the methods of and initial scientific inferences from the extraction of precision photometric information for the >800 trans-Neptunian objects (TNOs) discovered in the images of the Dark Energy Survey (DES). Scene-modeling photometry is used to obtain shot-noise-limited flux measures for each exposure of each TNO, with background sources subtracted. Comparison of double-source fits to the pixel data with single-source fits are used to identify and characterize two binary TNO systems. A Markov Chain Monte Carlo method samples the joint likelihood of the intrinsic colors of each source as well as the amplitude of its flux variation, given the time series of multiband flux measurements and their uncertainties. A catalog of these colors and light-curve amplitudesAis included with this publication. We show how to assign a likelihood to the distributionq(A) of light-curve amplitudes in any subpopulation. Using this method, we find decisive evidence (i.e., evidence ratio <0.01) that cold classical (CC) TNOs with absolute magnitude 6 <Hr< 8.2 are more variable than the hot classical (HC) population of the sameHr, reinforcing theories that the former form in situ and the latter arise from a different physical population. Resonant and scattering TNOs in thisHrrange have variability consistent with either the HCs or CCs. DES TNOs withHr< 6 are seen to be decisively less variable than higher-Hrmembers of any dynamical group, as expected. More surprising is that detached TNOs are decisively less variable than scattering TNOs, which requires them to have distinct source regions or some subsequent differential processing.

     
    more » « less
  6. Abstract

    We combine photometry of Eris from a 6 month campaign on the Palomar 60 inch telescope in 2015, a 1 month Hubble Space Telescope WFC3 campaign in 2018, and Dark Energy Survey data spanning 2013–2018 to determine a light curve of definitive period 15.771 ± 0.008 days (1σformal uncertainties), with nearly sinusoidal shape and peak-to-peak flux variation of 3%. This is consistent at part-per-thousand precision with theP= 15.785 90 ± 0.00005 day sidereal period of Dysnomia’s orbit around Eris, strengthening the recent detection of synchronous rotation of Eris by Szakáts et al. with independent data. Photometry from Gaia are consistent with the same light curve. We detect a slope of 0.05 ± 0.01 mag per degree of Eris’s brightness with respect to illumination phase averaged acrossg,V, andrbands, intermediate between Pluto’s and Charon’s values. Variations of 0.3 mag are detected in Dysnomia’s brightness, plausibly consistent with a double-peaked light curve at the synchronous period. The synchronous rotation of Eris is consistent with simple tidal models initiated with a giant-impact origin of the binary, but is difficult to reconcile with gravitational capture of Dysnomia by Eris. The high albedo contrast between Eris and Dysnomia remains unexplained in the giant-impact scenario.

     
    more » « less
  7. null (Ed.)
  8. Abstract We present a search for outer solar system objects in the 6 yr of data from the Dark Energy Survey (DES). The DES covered a contiguous 5000 deg 2 of the southern sky with ≈80,000 3 deg 2 exposures in the grizY filters between 2013 and 2019. This search yielded 812 trans-Neptunian objects (TNOs), one Centaur and one Oort cloud comet, 458 reported here for the first time. We present methodology that builds upon our previous search on the first 4 yr of data. All images were reprocessed with an optimized detection pipeline that leads to an average completeness gain of 0.47 mag per exposure, as well as improved transient catalog production and algorithms for linkage of detections into orbits. All objects were verified by visual inspection and by the “sub-threshold significance,” the signal-to-noise ratio in the stack of images in which its presence is indicated by the orbit, but no detection was reported. This yields a pure catalog complete to r ≈ 23.8 mag and distances 29 < d < 2500 au. The TNOs have minimum (median) of 7 (12) nights’ detections and arcs of 1.1 (4.2) yr, and will have grizY magnitudes available in a further publication. We present software for simulating our observational biases for comparisons of models to our detections. Initial inferences demonstrating the catalog’s statistical power are: the data are inconsistent with the CFEPS-L7 model for the classical Kuiper Belt; the 16 “extreme” TNOs ( a > 150 au, q > 30 au) are consistent with the null hypothesis of azimuthal isotropy; and nonresonant TNOs with q > 38 au, a > 50 au show a significant tendency to be sunward of major mean-motion resonances. 
    more » « less
  9. null (Ed.)
    ABSTRACT Measurements of large-scale structure are interpreted using theoretical predictions for the matter distribution, including potential impacts of baryonic physics. We constrain the feedback strength of baryons jointly with cosmology using weak lensing and galaxy clustering observables (3 × 2pt) of Dark Energy Survey (DES) Year 1 data in combination with external information from baryon acoustic oscillations (BAO) and Planck cosmic microwave background polarization. Our baryon modelling is informed by a set of hydrodynamical simulations that span a variety of baryon scenarios; we span this space via a Principal Component (PC) analysis of the summary statistics extracted from these simulations. We show that at the level of DES Y1 constraining power, one PC is sufficient to describe the variation of baryonic effects in the observables, and the first PC amplitude (Q1) generally reflects the strength of baryon feedback. With the upper limit of Q1 prior being bound by the Illustris feedback scenarios, we reach $\sim 20{{\ \rm per\ cent}}$ improvement in the constraint of $S_8=\sigma _8(\Omega _{\rm m}/0.3)^{0.5}=0.788^{+0.018}_{-0.021}$ compared to the original DES 3 × 2pt analysis. This gain is driven by the inclusion of small-scale cosmic shear information down to 2.5 arcmin, which was excluded in previous DES analyses that did not model baryonic physics. We obtain $S_8=0.781^{+0.014}_{-0.015}$ for the combined DES Y1+Planck EE+BAO analysis with a non-informative Q1 prior. In terms of the baryon constraints, we measure $Q_1=1.14^{+2.20}_{-2.80}$ for DES Y1 only and $Q_1=1.42^{+1.63}_{-1.48}$ for DESY1+Planck EE+BAO, allowing us to exclude one of the most extreme AGN feedback hydrodynamical scenario at more than 2σ. 
    more » « less
  10. Abstract

    Comet C/2014 UN271(Bernardinelli-Bernstein), incoming from the Oort cloud, is remarkable in having the brightest (and presumably largest) nucleus of any well-measured comet and having been discovered at the heliocentric distancerh≈ 29 au, farther than any Oort cloud comet. In this work, we describe the discovery process and observations and the properties that can be inferred from images recorded until the first reports of activity in 2021 June. The orbit hasi= 95°, with a perihelion of 10.97 au to be reached in 2031 and a previous aphelion at 40,400 ± 260 au. Backward integration of the orbit under a standard Galactic tidal model and known stellar encounters suggests a perihelion ofq≈ 18 au on its previous perihelion passage 3.5 Myr ago; hence, the current data could be the first ever obtained of a comet that has not been inside Uranus’s orbit in 4 Gyr. The photometric data show an unresolved nucleus with absolute magnitudeHr= 8.0, colors that are typical of comet nuclei or Damocloids, and no secular trend as it traversed the range 34–23 au. For ther-band geometric albedopr, this implies a diameter of150(pr/0.04)0.5km. There is strong evidence of brightness fluctuations at the ±0.2 mag level, but no rotation period can be discerned. A coma, nominally consistent with a “stationary” 1/ρsurface brightness distribution, grew in scattering cross section at an exponential rate fromAfρ≈ 1 to ≈150 m as the comet approached from 28 to 20 au. The activity rate is consistent with a very simple model of sublimation of a surface species in radiative equilibrium with the Sun. The inferred enthalpy of sublimation matches those of CO2and NH3. More volatile species, such as N2, CH4, and CO, must be far less abundant on the sublimating surfaces.

     
    more » « less